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CONSISTENCY ESTIMATES FOR A DOUBLE-LAYER POTENTIAL 
AND APPLICATION TO THE NUMERICAL ANALYSIS 

OF THE BOUNDARY-ELEMENT APPROXIMATION 
OF ACOUSTIC SCATTERING BY A PENETRABLE OBJECT 

A. BENDALI AND M. SOUILAH 

ABSTRACT. The consistency of the approximation of a double-layer potential 
when using a boundary-element method and approximating the curved bound- 
ary by a polygonal curve in two-dimensional problems or by a polyhedral surface 
in three-dimensional ones is investigated. The results are applied to the numer- 
ical analysis of the approximation of a model problem: the diffraction of a 
time-harmonic acoustic wave by a penetrable object. 

INTRODUCTION 

Double-layer potentials are widely used in the numerical computation of so- 
lutions to boundary value problems by means of boundary-element methods. 
Without being exhaustive, we quote: Laplace and Helmholtz equations (cf. 
Nedelec [24], Giroire [12, 13]), scattering of an electromagnetic wave by a di- 
electric cylinder (cf. Chang and Harrington [4]), coupling interior and boundary 
elements (cf. Johnson and Nedelec [1 8], Sequeira [34]), etc. 

In the case of curved boundary, for reasons of effective computation and dig- 
ital handling of geometrical data, an approximate boundary must be included 
on which the discrete problem is posed. Although this treatment is quite com- 
mon in practical computations, as far as we know, no result is available on the 
consistency or the asymptotic behavior of the error due to this approximation. 
By contrast, for the single-layer potential, the method initiated by Nedelec [25] 
gives complete answers in several directions (cf., e.g., Le Roux [22], Giroire [12, 
13], Bendali [2, 3], Johnson and Nedelec [18], etc.). This seems to be due to 
the following feature. The parametrization of the exact boundary is done by an 
orthogonal projection of the approximate boundary on the former (cf. Nedelec 
[25]). The consistency error is then essentially obtained by estimating the dif- 
ference between the potential kernel valuies for two points on the approximate 
boundary and for their respective projections on the exact boundary. This could 
be called "a local technique estimate". Since the singularity of the derivatives of 
the kernel of single-layer potentials is generally not integrable, this approach is 
not suited for double-layer potentials. Therefore, a global procedure is needed. 
The aim of the present work is precisely to deal with this problem. The basic 
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idea is to use a Green's formula in the domain bounded by the actual bound- 
ary and the approximate one. Then the consistency estimate essentially results 
in relatively long calculations involving interior elliptic estimates, the so-called 
inverse property in the finite element method, and exact computation of the po- 
tential created by linear distribution on elements of the approximate boundary, 
initiated by De Hoop (cf. Van Herk [36]). 

Among all the boundary value problems whose formulation as boundary in- 
tegral equation involves a double-layer potential, the results obtained are illus- 
trated by carrying out the numerical analysis of the one which is related to the 
scattering of a time-harmonic acoustic wave by a penetrable object. Two rea- 
sons essentially motivate this choice. The first comes from the fact that the 
kernel arising in this problem is that of the Helmholtz equation. It is decom- 
posed as a superposition of the kernel of the static problem, which is that of 
the Laplace equation, and a less singular kernel to which Nedelec's "local tech- 
nique estimate" applies. Hence, this situation gives answers which can be used 
in other directions. Beside the fact that this problem is important in itself in 
the applications, as suggested by the numerous papers devoted to the subject 
(cf., e.g., Harrington [16], Rokhlin [31], Kleinman and Martin [19], etc.), the 
second reason is due to the formulation of the problem as a Fredholm system of 
integral equations of the first kind, free of hypersingular integrals, considered 
here. Although the formulation as a Fredholm system of integral equations 
of the second kind is the most commonly used and the easiest to analyze, it 
is presently well established that the formulation considered in this paper has 
generally better numerical stability properties (cf. N6delec [26]). 

The formulation as a Fredholm system of the first kind is obtained directly 
in the two-dimensional case when modeling the scattering of a time-harmonic 
electromagnetic wave by a dielectric cylinder (cf. Chang and Harrington [4], 
Clair [6], for example). This formulation appears without the removal of the 
hypersingular integrals in the paper of Costabel and Stephan [9]. Hypersingular 
integrals are numerically difficult to handle. The normal trace of a double- 
layer potential given variationally by Hamdi [15] is the procedure used here 
to remove the hypersingularities of the integrals from the formulation in both 
two- and three-dimensional cases. It must be emphasized that the formula- 
tion given by Chang and Harrington, starting from Maxwell's equations in the 
two-dimensional case, directly provides the correct formulation without using 
Hamdi's formula. It must also be noted that direct numerical approximations 
of hypersingular integrals recently became available (cf. Schwab and Wendland 
[32], Krishnasamy et al. [21]). 

The paper is organized as follows. In ?1 the mathematical statement of the 
problem of scattering of a time-harmonic acoustic wave by a penetrable obstacle 
is given. Some known results on existence, uniqueness, and regularity of the 
solution are recalled. The rest of ? 1 is devoted to the reduction of the trans- 
mission problem to an integro-differential system stated on the boundary of the 
obstacle. The discretization of this system by a finite element method consti- 
tutes the boundary-element method used for the approximation of the solution 
of the scattering problem. If the consistency error for the approximation of 
the double-layer potential is not taken into account, the numerical analysis of 
the problem may be performed by techniques which are by now standard (cf. 
N6d6lec [24], Le Roux [22], etc.). Therefore, ?2 of this article is devoted entirely 
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to this consistency error, and only the final results of the numerical analysis are 
given. 

1. THE SCATTERING PROBLEM AND ITS APPROXIMATION 

1.1. The boundary value problem. The acoustic equations (cf., e.g., Germain 
[11] for general equations and boundary conditions, and Kress and Roach [20] 
for particular aspects considered here) show that the time-harmonic wave v 
scattered by a penetrable obstacle is a solution of the following transmission- 
type boundary value problem. 

With the notation 

{ Ql a bounded C?? domain of Rn; n = 2, 3, 

Q2 := 1n \Q1 the exterior domain, 

find v c C??(?1) n C??(K2) such that 

Av + k2V =(k 2- k2)uo in Q1, 

Av + k2v =0 inQ2, 
(1.2) 2[]=O onE, 

[X&nV]= -[AX9nUo] on F, 
lim IxI(n-l)/2(grad v * x/lIx - ik2v) = 0. 

Ix+o 

The last relation appearing in (1.2) is the Sommerfeld radiation condition de- 
scribing the energy propagation from the obstacle towards infinity. In connec- 
tion with this latter condition, the limit is always assumed to be uniform with 
respect to the angular variables x/lxl . 

In the preceding equations (1.2), 
F denotes the common boundary to Q, and Q2, 
n the unit normal to F outwardly directed to Q1, 
x a piecewise constant function defined by 

(1.3) {1 p in Qi, 
1 IP2 in Q2 , 

where Pm > 0, m = 1, 2, is the density of fluid at rest occupying the domain 
QM I 

uo the (given) incident wave (generally a plane wave) satisfying the equation 

(1.4) Auo + k2u0 - 0 in a neighborhood of Q2, 

km, m = 1, 2, the wave number 

(1.5) km := (0/Cm, 

where cm is the sound velocity in the fluid occupying the domains Qm; the 
time variation e"it (X > 0 is the pulsation) is suppressed by linearity, 

[ - ] is the jump across F defined by 

(1.6) [W] - W(I)Ir - W(2) Ir 
where w(m)Ip, m - 1,2, is the trace on F of a function or distribution defined 
in Qm, 
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a b = .7I a1b1 is the "scalar product" of two vectors respectively with n 
real or complex components al, b1, i = 1, ... , n . 

Other notation, as well as some function spaces like the Schwartz spaces 
B'(Pi), 2(Qj), etc., or Sobolev spaces like HI(Q,), H1/2(r), etc., are stan- 
dard in partial differential equation theory (cf., e.g., Lions and Magenes [23], 
Chazarain and Piriou [5], etc.) and are used without further comment. 

It must be emphasized that, as a result of (1.1), F is a closed, bounded 
(n - 1)-dimensional COO manifold without boundary, embedded in Rn . In fact, 
this amount of smoothness is not really necessary for the subsequent analysis. 
It seems to be sufficient to assume that F is of class C2. Since, however, this 
point is not essential, neither for the main result nor for the techniques which 
are developed for its proof, we choose not to further complicate the exposition 
by this discussion. 

In order to give an existence-uniqueness theorem for the problem (1.2), and 
for the purpose of numerical analysis, a problem set in a more general frame- 
work is considered. 

Given f in L2(K?1), g in H1/2(r), and C in H-1/2(r), 

find v c HI (Q1 ) n Hll c(Q2) such that 
Av + klv =-f in _'(Q1 ), 
Av + k2vO in -'(Q2), 

(1.7) 2- 

[v] = g in HI/2(r) 

[ZXnv] = in H-1/2(]F) 
lim jxI(n-I)/2(gradv * x/lxl - ik2v) = 0 . 

xI-+0 oo 

The behavior of v at infinity is described by the radiation condition and not 
by its belonging to any Sobolev space (cf. Wilcox [37]). This explains the in- 
volvement of the Fr6chet space 

H.c(Q2) : {v c -'(Q22)Iv c H1( 2), Vq cE 2(1R)} 

in the formulation. For any real number s, the space HI1c(02) is similarly 
defined. 

The following theorem can then be stated. 

Theorem 1.1. The problem (1.7) has one and only one solution. Moreover, for 
all s > -1, if the data respectively satisfy f c Hmax(s 0)(Q1) g c Hs+312(F) 
and C c Hs+1/2(r), the following regularity holds: 

( 1 .8 ) v c Hs+2(Ql ) nHs+2(Q2) 
Proof. Uniqueness follows by Rellich's lemma [30] (cf., e.g., Kress and Roach 
[20]). Existence of a solution can be obtained either by standard arguments 
involving the limiting absorption principle like in Wilcox [37], or by the elegant 
method of Lax and Phillips (cf. Phillips [29]). The higher-order regularity, 
s > -1, holds by general results for elliptic systems due to Agmon, Douglis, 
and Nirenberg [1]. 

1.2. Integral equations. Let 

(1.9) u := v + uO, 
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where v is the scattered wave by the obstacle, solution of problem (1.2), and 
uo is the incident wave. The representation formula for the solution of the 
Helmholtz equation satisfying an outgoing Sommerfeld radiation condition in 
the case of an exterior domain (cf., e.g., Colton and Kress [7], Gunter [14]) 
gives 
(1.10) 

f J(G1 (x , y)X()(y) - 0. G1 (x , y)p(l)(y)) dF(y) ,x e Q 
U(X) = 

uo(x) -J(G2(X, Y),i2)(y) - &nG2(X, y)p(2)(y))dF(y) XE Q2. 

Here, Gm is the Green's kernel giving the outgoing solutions of the Helmholtz 
equation, 
(1.1 1) 

km (n 2 n/2)/(mXxym 1 Gm(X, Y) ) H(1) (kmx - yl), x =4y, m =1,2, 

where H(1) is the Hankel function of order 1 and index t (cf., e.g., Wilcox 
[37]), and 

{P(m) ()F 
(1.12) { m AU(m)1, 

m I 1, 2, 

are the respective first and the second trace of u taken from its values on Om , 
m = 1, 2. Unless mentioned explicitly otherwise, all derivatives occurring 
under the integral sign are implicitly assumed to be taken with respect to the 
variable y. 

The transmission conditions then show that the determination of u is re- 
duced to that of 

( 1.1 3) i := A(1) lp, = A(2) IP2, 
(1.13) p = /P(1) = (2) (1.14) p :-p~1 p 

The formulae, giving the traces of single- and double-layer potentials, yield 

p1 VIA-Nlp = p12, 

P2V2) - N2P = -p/2 + Uolr, 

(1.15) KA - 1Dlp = A/2v 
Pi 

K2A --D2p = -i/2 + p9uojr, 
P2 P2 

where the integral operators involved on F are denoted by 
(1.16) 

VmA(X) - Gm (x v y) A(y) dr1(y) , 

Nmp(x) fanyGm(x, y)p(y) dF(y), 

rI' forxEfandm=-1,2. 

KmA(X) jonx Gm (x, y)A(y) dF(y), 

Dmp(X) =anx j &nyGm (x, y)p(y) dF(y), 
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It is worth noting that the integrals defining Vm, Nm, and Km exist as usual 
Lebesgue integrals, whereas the last operator Dm is hypersingular. Among all 
the possible methods which can be used to give it a meaning, the easiest and 
fastest, in the present context, is that in the sense of distributions (cf. Costabel 
[8] for a more general setting). 

The mapping properties of these operators are as follows: 

Nm: H-l12+s(F) H'2+s(]) 

(1.17) { NK: H-l/2+s(F) , Hl/2+s(F) 
Km,: H-1l 2+s 

(]) 
Hl 12+s (]F) 

Dm: HI /2+s (r) - H- 1/2+s (F) 

for m = 1, 2 and for all real s if F is coo (cf., e.g., Chazarain and Piriou 
[5] and Seeley [33]). Costabel [8] has shown that the first and the last relations 
of (1.17) remain true if F is only Lipschitz for s < 1/2. 

A Fredholm system of the first kind can be obtained by adding the first to 
the second equation, and the third to the last one. Then, multiplying by test 
functions and integrating once more over F leads to the following variational 
system: 

Given (f, C) := (uolr, -(l/p2)0nuolr) c T := HI12(F) x H- /2(]) 

find (A, p) E Z := H-I/2(r) x HI/2(r) such that 

(1.18) j (V)A,j)-(Np,jt)=(f,It), VECH-"/2((F) 

-(q, KA) + (q, Dp) = (q, C), Vq E Hc12(]), 

where 

is the (anti)duality pairing between H1/2(F) and H-1/2(r), 

V:=pIVI +P2V2, 

(1.1 9) N:= N1 + N2 , 

K := K1 +K2, 

D:=-ID? +-D2D PI P2 

This formulation was given by Costabel and Stephan [9]. It needs the compu- 
tation of the hypersingular integrals which appear when the explicit expression 
of the operator D is considered. These hypersingular integrals are well under- 
stood from a theoretical point of view, thanks to the Calderon-Zygmund theory 
of singular integrals (cf., e.g., Neri [28]) or to the theory of pseudodifferential 
operators (cf., e.g., Chazarain and Piriou [5], Seeley [33], etc.). It is only re- 
cently, as was pointed out to the authors by the referee, that suitable quadrature 
schemes for finite part integrals (cf. Schwab and Wendland [32]) or regulariza- 
tion techniques based on Taylor expansion were proposed to treat directly the 
hypersingular operator D. 

Here we choose to use the following recipe introduced by Hamdi [ 15] (cf. also 
Nedelec [26]), which essentially is an integration by parts on the boundary and 
which was used with some success in practical computations (cf., e.g., Chang 
and Harrington [4], Clair [6], etc.): 

(1.20) (q, Dp) = -c(p, q) + d(p, q), 
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(1.21) c(p, q) JJ (IGI + I G2) (x, y)grad-p(y) x n(y) 
- gradr q(x) x n(x) dF(y) dF(x), 

( 1.22) dd(p, q) jI (IGI +2G2 (x, y)p(y)n(y) 
* q(x)n(x) dF(y) dF(x), 

where the multiplication sign x denotes the exterior vector product a x b 
a1b2 -a2b, in two-dimensional problems and the usual vectorial product in three 
dimensions, and gradr is the tangential gradient of a function defined on F. It 
is worth noting that, in the two-dimensional case, grad]p(y) x n(y) = 9,p(y), 
where a is the curvilinear abcissa which parametrizes F in the counterclock- 
wise direction. 

The operator K is the transpose of the operator N; i.e., it satisfies 

(1.23) (q, KT) = (Nq, A), Vq e H1/2(F) 

where the operator N is defined by 

(1.24) Nq= Nq . 

With the sesquilinear forms 

a(A, ,u) := VA, A), 
(1.25) j b(p, A) (Np, A), 

tb*(A, q):(Nq, A), 
the system (1.18) can be rewritten in the form 

find (A, p) E Z such that 
(1.26) a(., u) - b(p, u) = (f, u), VA E H-1/2(I) 

I -b*(), q) - c(p, q) + d(p, q) - (q, C), Vq E H'/2(I) 
It is well known by now that the operator associated with the system (1.18) is 

a strongly elliptic pseudodifferential operator on F (cf. Costabel and Wendland 
[10]). Usual duality properties in Hilbert spaces enable one to identify the space 
T with the (anti)dual space Z' of Z. Then, the theory of pseudodifferential 
operators (cf., e.g., Chazarain and Piriou [5], Seeley [33]) can be used to de- 
compose this operator in the form A + 8, where A is coercive on Z, and to 
establish that A, for all real s, is a continuous mapping 

(1.27) A: Z, Ts 

and E a linear compact map from Z, into Ts, where Zs := H-l/2+s(F) x 
HL/2+s(F) and Ts := Hl/2+s(F) x H-l/2+s(F). 

The uniqueness of the solution of the system (1.18) (cf., e.g., Costabel and 
Stephan [9]) and the Fredholm alternative then yield the following theorem. 

Theorem 1.2. The operators A and A + 0 are (algebraic and topological) iso- 
morphisms from Z, onto Ts for all real s. 

Remark 1.3. In view of the coerciveness properties given by Nedelec and Plan- 
chard [27] in the three-dimensional case, and by Hsiao and Wendland [17] in 
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the two-dimensional case, it is actually a simple exercise to explicitly write out 
the system (1.26), up to some compact operators, as two uncoupled coercive 
variational equations. This leads to a simple and direct treatment of the error 
coming from the approximation of the boundary (cf. Bendali [3], where this 
approach is detailed for a similar case). 

1.3. The boundary element method. According to Nedelec's ideas [25], the 
approximation of the curved exact boundary F seems to require a complicated 
approach. It is assumed that there exists a finite family Y of local charts (i.e., 
local coordinate patches) (co, qi), forming an atlas of F, and that the boundary 
F can be "triangulated" using this atlas. More precisely, it is supposed that Y is 
a finite family of triples (co, D, V/) , where D is a bounded segment in the two- 
dimensional case and a polygonal domain in the three-dimensional case having 
its closure D contained in co, which further fulfills the following conditions: 

(1.28) r= U V'(D), 
(w,D, ql) C 

and the V/ (D) are nonoverlapping and such that no vertex of one tV1 (DI) lies 
on the (interior of the) curvilinear edge of another qV2(D2). 

For all (co, D, V/) E 7, consider a "triangulation" 4h(D) of the domain 
D, in the usual meaning of finite element triangulations, with elements being 
segments in the two-dimensional case and triangles in the three-dimensional 
case. This leads to a triangulation ST, a disjoint union of the 4,(D), which 
is assumed to satisfy the following uniform regularity condition: 

(1.29) { hT -diam(T) < h, VTS* 

here, PT denotes the diameter of the largest ball which can be inscribed in T. 
As usual in finite element error estimates, c indicates various constants, not 
necessarily the same in all instances, but always independent of h and of the 
solutions of the continuous or the discrete problem. 

Let (co, D, qi) be in 7 and T in 4,(D), and let VIT be the linear inter- 
polant of v/ on T from the values of v/ on the vertices of T, 

(1.30) K := IT(T), 

and Fh the approximate boundary defined by 

(1.31) Fh :=U U IIT(T) 
F TEGh(D) 

We denote by Sh the collection of all such elements K. 
Following Nedelec [25], assume once again that the different triangulations 

are compatible in the following sense. With Fh a closed polygonal curve in the 
two-dimensional case, and a polyhedral surface in the three-dimensional case, 
assume the above elements K satisfy an overlapping condition similar to the 
one mentioned before. Observe that this construction forces the approximate 
boundary Fh to have its vertices on the exact boundary F. 

For all K in 5?h, we introduce an orthonormal frame of the linear affine 
manifold supporting K and let 4 c Rn-I be the respective coordinates. When 
restricted to each K in 5?h, the following definitions have an obvious meaning. 
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A function p defined on K is said to belong to Dm , the space of all complex- 
valued polynomials of degree less than or equal to m, if p, as function of the 
variable , is in P?m. By gradK p we denote the tangent vector field to K 
obtained in the usual way by differentiating with respect to the variable . In 
this context, gradrf p will be the vector field tangent to Fh, defined almost 
everywhere by gradr P IK := grade P for all K in . 

Let 

(1.32) Mh :=-{ E L (Fh)K := AIK c PO, VK Eh}, 

(1.33) Vh := {q c C(P_h)IqK := qiK C PI, VK E 3h}. 

The compatibility conditions made on the triangulation 5h* insure that the 
spaces Mh and Vh have dimensions given by the number of elements of 5?h 
and the number of vertices of Fh, respectively. 

We can then consider the approximate sesquilinear forms 

(1.34) ah(Ah, Ah) (= j (PiGI(xh, Yh) + P2G2(Xh, Yh)) 

' ,h(Yh)Jh(Xh) dFh(Yh) dFh(Xh), 

for Ah and Ph in Mh, and 

(1.35) bh(Ph, Ih) h jhnh (Xh, Yh) + 9nh G2 (Xh, Yh)) 

*Ph(Yh)fh(Xh) dFh(yh) dFh(xh), 

for Ph in Vh and Ah in Mh , and similar expressions for b,* Ch, and dh . The 
approximate (anti)linear forms are introduced as follows: 

( (fh , h)h j UO(Xh)Jth(Xh) dl7h(Xh) for Ph in Mh, 

(1.36) tr 

(qh, Sh)h =- ' nh UOu(xh)qh(xh) dfh(Xh) for qh in Vh. 

In this paper, for the sake of clarity, points lying on the approximate boundary 
and geometrical quantities related to Fh are denoted with the help of an index 
h to distinguish them from the corresponding objects on the exact boundary 
F. Moreover, there is a precise relation between a point denoted by x on F 
and the point Xh on Fh, which is given in what follows. 

We endow Mh and Vh with different norms. To this end, we begin by defin- 
ing transport operators which carry each function defined on Fh to a function 
defined on F. Following N6d6lec [25], we consider the e-tubular neighborhood 
of F, 

(1.37) := {x c R113y cE such that Ix-yl < e}. 

If e is taken sufficiently small, the mapping F x (-e, c) ,-+ defined by 
(m, t) F-- m + tn(m) is a C" diffeomorphism (of manifolds), and the pro- 
jection 3: %g -- F given by ?(m + tn(m)) = m an infinitely differentiable 
map (in the meaning of differentiable maps of manifolds). Hereafter, assuming 
that such an e is fixed, there is an h* such that every h less than h* gives 
rise to an approximate boundary Fh contained in Y. Then 91Irh defines a 
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homeomorphism from ]h onto F. In the sequel, it will always be assumed 
that every approximate boundary considered fulfills the later condition. 

Hence, for all K in S'h, 

(1.38) K: K. 

A parametrization of a neighborhood of K can then be obtained by 

(1.39) x = 9Xh (4)I 

where Xh (4) is a point (of the linear manifold supporting K) in a neighborhood 
of K with 4 as coordinate. 

The Lebesgue measure on F may be written as 

(1.40) dF(x) gK(=)d, X = -'Xh 

As a result, the transport operators are defined by 
[ rh: Mh L 2([), 

Sh: Vh c-(r), 

(1.41) 1 
I (rhAh)lk(x).= g(')AK X = 9Xh), Xh C K, VK e3, 

I (Shqh)lk(x):=qK(G), X == Xh(G), XhEK, VK Eh4 
Remark 1.4. The multiplicative term 1 /1gK is introduced to simplify some 
expressions occurring later. All norms written with or without this factor are 
uniformly equivalent relative to h. 

Clearly, the operators rh and Sh are one-to-one and can be used to identify 
respectively Vh with a subspace of CO(F) and Mh with a subspace of L2(F). 
Consequently, these spaces can be endowed with various norms 

(1.42) lAhlls 11rhAh11s,p, Ah E Mh, 

for all s < 0 and 

(1.43) HIPhHlls =1ShPh11s,F, Ah E Vh, 

for all s < 1 . 
Here, 11 v1s r is a norm of the Sobolev space Hs(F) related to the previous 

atlas {(co, i) I (w, D, i) E } . 
All the following estimates are obtained by standard techniques (cf. Nedelec 

and Planchard [27], Nedelec [24], Le Roux [22], etc.). 

Lemma 1.5 (Inverse inequalities). Under the assumption of uniform regularity 
of the triangulation h*, we have 

(1.44) IlIhIlO < ch 1I2 IXhl/-112, VAh E Mh, 

(1.45) IlPhlll < ch1/ IlPhHIl/2, VPh E Vh, 
/ ~~~~~~~~~1/2 

(1.46) ( E meas(K) IgradKPK 
12 < ch12 I PhHIl/2, VPh E Vh 

The consistency error of the approximation of the sesquilinear forms a( , 
c( *, * ) and d( *, * ) and of that of the (anti)linear forms f and 4 are recalled 
in the following theorem. 
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Theorem 1.6. The following consistency error estimates hold: 

la(rhAh, rhgh) - ah(Ah, Jh)l < chI4h11/21h1K11-1/2, 

IC(Shph, shqh) Ch(Ph, qh)I ? chjlph11/2jjqh 1/2, 

(1.47) Id (Shph, Shqh) -dh (Ph, qh) I < ch IlPh 11 1/2 ||qh 11 1/2, 

(f, /Uh) - (fh, Puh)h I< ch3/2 max sup 10uc(x)1 Ih111/2, 

I (Sh qh, 0 - (qh, CO h ) < ch max sup I 0 uo (x) I I Iqh || 1/2, 

for all Ah, /Uh in Mh and all Ph, qh in Vh . 

In the above theorem, the incident wave u0 is assumed to be defined and 
regular (at least C2) in a tubular neighborhood Ye with c' > e. 

Remark 1.7. It must be noticed that Le Roux's and Nedelec's results give the 
estimates 

(1.48) Ia(rhAh, rh/h) -ah(Ah, POh)| < ch 21h1o4H1h1o, 

and only 
(1.49) ld(shph, rhqh) - dh(Ph, qh)1 ? ch11Ph lo 1qh1lo, 

because of the loss of one convergence order when approximating the normal n 
to F by the normal nh to Fh. However, the use of the inverse inequality ( 1.45), 
to come back to the norm 11 11-1/2, results in a loss of one convergence order 
in h and makes the behavior of the consistency error of the two sesquilinear 
forms similar. 

2. CONSISTENCY ERROR ESTIMATE FOR A DOUBLE-LAYER POTENTIAL 

This section is almost entirely devoted to establishing the behavior of the 
consistency error for the approximation of the sesquilinear forms related to the 
double-layer potential, when the actual boundary is replaced by the approximate 
one. As it is pointed out in the introduction, this estimate cannot be obtained 
by the usual "local techniques". In order to make the discussion more straight- 
forward, we decompose the kernel yielding the form b( *, * ) as a superposition 
of a singular part, which can be viewed as the kernel of the static case, and a less 
singular part, which describes the propagation properties of the solution. Obvi- 
ously, the estimates related to the transposed form b* are similar. First, in ?2.1, 
we state our main result and give one of its consequences, the numerical analysis 
of the scattering problem considered in the previous part. The next subsection 
is devoted to establishing the consistency estimate for the weakly singular part 
of the double-layer potential. The proof of the full consistency estimate is done 
in the last subsection and consists of several steps, each embodied by a lemma. 

2.1. The main result and its consequence. The main result of this paper is as 
follows. 

Theorem 2.1. There exists h* > 0 and a constant c not depending on 0 < h < 
h* such that 

(2.1) 1b(shph, rhh) -bh(Ph, Ph)I < ch 1/2 lhH1 -/2HlphHl1/2, 

(2.2) lb*(Shph, rh/h)- b(Ph, POh) < ch 1/|LuhK1/2HphH1/2, 

for all Ph in Vh and all /h in Mh. 
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The discrete problem, for which the solution may be effectively computed, is 
stated as follows: 

find (4h, Ph) E Zh Mh X Vh such that 
(2.3) j ah(.h, qh)-bh(Ph, /h) = (fh, /h)h, V/h E Mh, 

h-b(4h, qh) - Ch(Ph, qh) + d(Ph, qh) = (qh, Ch)h, Vqh E Vh, 

where (fh, /h)h and (qh, Wh)h are suitable approximations of the linear maps 
occurring in the continuous problem defined through the data of f in H1/2(F) 
and ; in H-1/2(). 

Hence, using general results on the numerical analysis of nonconforming 
approximations of variational problems by a finite element method (cf., e.g., 
Strang and Fix [35]), Theorem 2.1 provides the last estimate needed to prove: 

Theorem 2.2. There exists h* > 0 and a constant c not depending on 0 < h < 
h* such that for all (fh Ch) in Mh x Vh, the discrete problem (2.3) has one and 
only one solution (Ah, Ph) that satisfies 

l|rhAh -41-1/2,F + lShPh -Pll/2,F 

(2.4) < ch 1/2 (lJf1112,F + KH0-1/2,F) + sup l(fh, /h)h -f rhlh)I 
(2.4) P~~~~~~~~~h EMh I I/'hH 1/2 

+ SUP I(qh, h)h - (Shqh I 0) 

qh EU Vh IIqh || 1/2 

In the case of particular f and ' given through the data of the incident wave 
uo (cf. (1.18)), which is assumed to be at least C2 in a c'-tubular neighborhood 
of the boundary F with c' > X, and if the approximate linear forms are given 
by (1.36), the general result of the previous theorem can be stated in a somewhat 
more precise form. 

Corollary 2.3. Under the above general assumptions, the following error estimate 
holds: 

(2.5) llrhAh - 4-1/2,F + IlshPh - PlH1/2,F < ch 12 max sup IJ'uo(x) . 
II2 x E7 

2.2. Consistency error estimate for the weakly singular part. The sesquilinear 
form b(. *) is defined by means of the kernel 

(2.6) G= GI + G2, 

where Gm, m = 1, 2, are given in (1.1 1). Well-known properties of the Bessel 
functions show that G can be decomposed in the form 

(2.7) G=E?+F, 

where the kernel E is given by 

(2.8) E(x , y) :=-2FO(X - YI) x =A y, 
(o-n 

and the function 1D may be written as 

( u(r) if the dimension n = 3 
' r2v(r) Inr+w(r) if n = 2. 
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The constant w0n := 270/2/F(n/2) is the measure of the unit sphere of iR, the 
function t t + Fn(t) a suitable primitive of t 1 

/ tn-I, r x - y and 
u, v, and w are analytic functions. 

Let b(?) and b(0) be the sesquilinear forms defined respectively on F and h 
1h through the respective kernels &nE(., *) and 9nhE( , *), and b(l) and 
b(l) the sesquilinear forms obtained in the same way via the kernel (D. h 

For the weakly singular part of the kernel, the consistency error estimate is 
established as follows. 

Theorem 2.4. For all Juh in Mh and Ph in Vh, the following estimate holds: 

(2.10) lb(l)(shph, rh,l/h) - b)(Ph, /Jh)| < ch 1/2 PhH|l/2Il/LhH1-1/2 

Proof. First, we take the difference between the respective values of the kernels 
of the sesquilinear forms b(l) and b01) and write it as 

&nh'~~(Xh, r grh)r 
9nD(x, y) - 9n,(D(Xh, Yh) = g(r)- n(y) -g(r)- nh (Yh) r rh 

(2.11) = (g(r) - g(rh)) *.n(y) + g(rh) r *(n(y) - nh(Yh)) 

+g(rh) r - rh nh(Yh), 

where r := x - y, r := Irl, rh := Xh - Yh, rh rhI, and g represents a 
Lipschitz function over each bounded set of IR. 

Hereafter, whenever there are two variables designated by the same letter, the 
second being indexed by h, such as x and xh, it is assumed without further 
comment that the two points x and Xh lie respectively on F and 1h and that 
they are related to each other by x = 'Xh . 

Since x and y are varying on F, one easily obtains (cf. Nedelec [25]) 

(2.12) 1 Ix -Y1 - lXh -Yhl I < ch21X _ YI for all x, y on F. 

It follows that 

(2.13) (g(r) - g(rh)) r- n(y) I < ch21x -yl. r 

Therefore, the respective part of the expression for b 1)(ShPh, rhith) - b 1) (Ph, Iuh) 
can be bounded by ch2lHphhIollIuhloI 

Using the estimates 

( )n(y) - nh (Yh) | ch, 

(2.14) |r _rh < ch , 
r rh 

one can bound the remaining expressions in (2.1 1) to obtain terms in 
chllphlIo1011h11o. The inverse inequality (1.44) leads to the estimate (2.10). O 

2.3. Consistency error estimate for the singular part of the kernel. Clearly, the 
proof of Theorem 2.1 is now reduced to that of 
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Theorem 2.5. For all Ph in Mh and Ph in Vh, the following estimate holds: 

(2.15) b(0)(Shph, rh/lh) - bh )(Ph, 'h)l < ch 112 Ph 1l 1/2 1Ah 1/-h1/2. 

Proof. The error to be estimated is denoted by 

(2.16) eh := b(0)(Shph, rh/lh) - b()(Phh, Ph), Ph e Mh, Ph E Vh. 

Recall that the kernel of b(?) (resp. b(0)) is &nE(x, y) (resp. 9nhE(Xh, Yh)) - 
It is easy to see that the earlier procedure used for the weakly singular part 

of the kernel fails here because of the nonconvergence of certain integrals that 
arise. 

For the sake of conciseness, throughout this section the following notation is 
adopted: 

(2.17) {p ShP, Ph E Vh, 

:= rhgh, Ph E Mh. 

The error eh can be written as 

eh = J aj nE(x, y)p(y),u(x) dF(y) dF(x) 
(2.18)rr 

*-ff|a9nh E (Xh, Yh)Ph (Yh)/Lh (Xh) dFh (Yh) dFh (Xh) - 

Recall that h is supposed to be sufficiently small so that Fh is contained in 
the e-tubular neighborhood t. All Ph in Vh can be extended to 7, in the 
following way: 

(2.19) P(M) = Ph(Yh) 

for all =y + tn(y) in , with Y = Y = Yh- 
This extension gives a function p constant along the normal n to F and 

coinciding with ShPh on F and with Ph on Fh. Note that this notation is 
compatible with the one given in (2.17). 

In order to avoid unnecessary complications in the proofs and long discus- 
sions of every situation that may occur, in the sequel the interior domain Q2 
is assumed to be strictly convex. However, in other situations the proofs can be 
adapted to yield the same conclusions. 

The remaining part of the proof will be given in a sequence of lemmas. 

Lemma 2.6. Using previously introduced notations in (2.17) and (2.8), the error 
eh may be written as 

eh = 
2 

j(Fn (I * I) * T) (x)/i(x) dF(x) 

(2.20) +z (4 anhE(x, yh) - f YE(xh,Yh)) 
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where T is the compactly supported distribution of Rn given by 

(2.21) (T, 1)) = gradp*gradXdx, Vqe (I(R ) 

and Oh the bounded domain enclosed by Fh 

Proof. Using the definition of ,lk, we can write the error eh as 

eh= E I ( j&nE(x, y)p(y)dIT(y) 
(2.22) K E 

Jh 

JanhE(Xh, Yh)P(Yh) dJ'h(Yh)) /1K dK(Xh). 

For almost all x in F (i.e., such that Xh is in the interior of any K in ST), 
adding and subtracting in (2.22) the term f- anhE E(x , Yh)P (Yh) dFh (Yh) leads 
to the following expression of eh: 

eh = EnE(x y)p(y) dr K(y) 
KEX 

( -hnkE(x , Yh)P(Yh) dITh(Yh)} /1K dK(Xh) 
(2.23) r 

+ E n' {J h &E(X, Yh)P(Yh) dFh(Y) 
KEX r 

JanhE(Xh, .Yh)P(Yh) dFh(Yh)} /1K dK(xh). 

In order to transform the term 
(2.24) 

jnE(x, y)p(y) dF(y) - anhE (x, Yh)P (Yh) dIh (Yh) 

= E {JnE(x y)P(y) dL(y)-j anhE(x Yh)P(Yh) dL(Yh)} 

the essential tool is to use a Green's formula applied to the functions E(x, *) 
and p in the open set bounded by the exact and the approximate boundaries 17 
and Fh. In the previous formula (2.24), L = - L is a curvilinear element on 
I7 associated with L in the same way as K was associated with K in (1.38). 
However, such a treatment cannot be carried out directly because of the lack 
of regularity of the function p on the latter domain in the three-dimensional 
case. 

Consequently, the Green's formula is applied to the respective functions in 
each domain UL bounded by L, L and, in the three-dimensional case, in the 
faces FL generated when the normal n to 7 runs over the boundary AL of 
L; see Figure 1. 
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K~~~~~~~~~~~~ 

FIGURE 1 

Two cases must be distinguished. 
(i) The element L is different from the element K. In this case, x does not 

lie on L. One gets 

J (AE(x , y)p(y) - E(x , y) Ap(y)) dy 

= f(anE(x , y)p(y) - E(x , y)np(y)) dL(y) 
(2.25) L 

-j (&nhE(x, Yh)P(Yh) - E(x, Yh)anhP(Yh)) dL(Yh) 

+ J (&OE(x, y)p(y) -E(x, y)&vp(y)) dFL(y) , 

where v is the unit normal to FL outwardly directed to UL. Since p is 
constant along the normal n, the equation (2.25) can be reduced to 

-|JUL E(x , y)\Ap(y) dy = J &nE(x, y)p(y) dL(y) + AL(X) 
UL ~~~~L 

(2.26) - j9nhE(X, Yh)P(Yh) dL(Yh) 

+ j &,E(x , y)p(y) dFL(y) , 

where AL(X) is defined by 

(2.27) AL(X) jE(x, Yh) 3nhP(Yh) dL(Yh) - E(x, y)0vp(y) dFL(y) . 

(ii) The element L and the element K are the same element. In this case, 
the singularity of the function E(x, *) at the point x forces the removal from 
UL of all points y such that Ix -y I < e. Taking the limit as e goes to zero 
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only has the effect of adding to the right-hand side of (2.26) the term 

lim fgradE(x, y). x y p(y) dS (y) 
(2.28) 8-0, 2 Y 

= -lim-a)F 2,Flen-lp(X,) =p(x), 
e-0o 2 (On 

where xE is a point in SE := {Y E ULI IX - YI = E} whose existence follows 
from the mean value theorem. 

Let P be the function in L2(In) defined almost everywhere by 

(2.29) P= AP t(y) y c- ULand L E A, 
O, otherwise. 

Summing over all L in 9h, we obtain 

- E(x, y)P(y) dy = / &nE(x, y)p(y) dl(y) + E AL(X) 
Rn L E h 

(2.30) LE5h 

- j &ln,E(X , Yh)P(Yh) dFh(yh) + p(x), 

since 

E 
'FL (&vE(x, y)p(y)) dFL(y) = 0, 

LEA,9hL 

because p is continuous across FL and E(x, *) is COO except at the point 
x. 

Thus, using (2.23) and (2.30), we obtain 
(2.31) 

eh =- j/1 (x) , AL(X) d]F(x) - ju(x)p(x) dI(x) 
L LE, rT 

+ E I ' (nhE(x, Yh)P(Yh)-anhE(Xh , Yh))P(Yh)dIh(yh)7TKdK(xh) 

- j /1(X) (j E(x, y)P(y) dY) dI(x) . 
r n 

Using Gauss's theorem, we can write 

(2.32) P(Xh) = j(GnhE(X, Yh) -&anhE(Xh, Yh))P(Xh)dfh(Yh). 
rh 

This completes the proof of the lemma, since formula (2.20) is now a straight- 
forward consequence of the theory of distributions. El 

In order to bound eh, the following lemma is proved. 

Lemma 2.7. The distribution T defined in (2.21) satisfies the estimate 

(2.33) I(T, ) < chl gradp|0,rjj0jjj,Rn, Vk e(E R ). 
Proof. Let L be in Sh. Using the local orthonormal frame associated with L 
and the parametrization of L given by 

(2.34) 4 1 YXh( ), 



82 A. BENDALI AND M. SOUILAH 

we can express UL as 

(2.35) UL = {(4, t) E 
n 
lxh(c) E L and fL() < t < 0}. 

Here, fL is a COO function vanishing at all 4 for which Xh (4) is a vertex of 
L. 

Using the coordinate system given in an open set of the e-tubular neighbor- 
hood 2 of F by 

(2.36) x(4, t) = y(4) + tn(4), 

we can write 

(2.37) J gradp. gradq0dUL = J gL t)g(, t)&Oap&Oflq$dc dt. 

Greek indices run from 1 to n - 1. The contravariant components g2fl (4, t) 
of the metric tensor in the above integral are those related to the coordinate 
system (4, t) for which the Lebesgue measure dUL is expressed by dUL = 

VgL(c, t) dX dt . Observe that in (2.37) we use the fact that 

(2.38) t n(4 t) = O 0tP = O. 

We adopt here the usual convention of tensorial calculus to sum over repeated 
upper and lower indices. 

Usual estimates in the finite element method give IfL(4)l < ch2 . Since p is 
not depending on t, one has 

(239) (tJ? )01/2 ( 1/2 
(2.39) 

(0 1/2 
d < chi 

(j 

&p 12 d~) 

The discrete Cauchy-Schwarz inequality completes the proof. E1 

Let us decompose the error eh as eh = eh + eh, where eh is the first term in 

the right-hand side of (2.20). For eh, we have 

Lemma 2.8. In the above notation, 

(2.40) 
2 

j(Fn (I | *) * T) (x),u(x) dF(x) < ch 1/2 IIph 111/2I11 h 11 - I/2 

for all Ph in Mh and Ph in Vh* 

Proof. Since T is a compactly supported distribution in H-1(Rn) and the 
convolution operator Fn (I *)* is a pseudodifferential operator of order -2, 
the following result holds: 

(2.41) Fn(l * l) * T E- Hllc( n). 

Trace theorems in Sobolev spaces give 

(2.42) IfJf(x)(Fn( *) * T)(x) dF(x) < cllFn( I) * TIIl/2,rIlUhIl-/l2 

< chll gradp10ojrI11/u1f1/2 . 

By the inverse inequalities of Lemma 1. 5, one gets (2.40), proving the lemma. uI 
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It remains to estimate the term eh . We decompose it into three terms, 

(2.43) eh = eh21 + e2, 2+ e2, 3 

where we have set 

(2.44) e2 h 
. _ 

JK IL(0E(x , Yh) anhE(Xh , Yh)) 
(2.44) K Eh (LE YhVK 

* (P(Yh) - P(Xh))TiK dL(Yh) dK(Xh), 

/5A{ ze2 = ,|2 E(x,E Yh) - anhE(X h , Y h)) 

(2.45) eh' K 'Kh IKY)anhh(h,Y) 

* (P (Yh) - P (Xh))7i'K dK(Yh) dK(Xh) , 

(2.46) 
h 

KEh LE K 

* (P(Yh) - P(Xh))TIK dL(Yh) dK(Xh), 

with the notations 

(2.47) XK :L c S;hLnK = 0}, 
(2.48) s'K := {L EchIL n K 74 0 and L#7 K} . 

Note that, thanks to the uniform regularity of the triangulation, as assumed 
in (1.29), there exists a constant c > 0 not depending on h, L and K such 
that 

(2.49) inf{Ix-yJ;x E K andy EL} >ch, VLEYK . 

The estimation of the term e 2,1 requires the following lemma. 

Lemma 2.9. For all K in -, and all L in XK, the following estimate holds: 

(2.50) I(&nhE(x, Yh) -anhE(xh, Yh))I < IXyhn-I 

for all (Xh, Yh) in Kx L. 
Proof. Set 

(2.51) R := Yh-X, R:=IRI, 
(\Rh :_=Yh - Xh, Rh =zIRhjI 

There follows 
2 R _Rh 

(2.52) anhE(X, Yh) - &nhE(Xh, Yh) 2-- ( R- R n , 

where nL is the unit normal to the element L coinciding with nh on L. 
Note that one can write 

R Rh _ R-Rh __(Rh_-_R)(Rn-_ +Rn-2_R+ +Rn-I 
* Rn Rn Rn h RhnRn 

Using the bounds 

(2.54) IR-RhI < R- RRhI < ch2 
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and Rh > ch, a consequence of (2.49), we conclude 

R 
(2.55) - -1 <ch, 

Rh - 

which yields 

(2.56) I Rh > cR, 
R > cRh, 

with a constant c > 0 not depending on h, L or K. 
As a result, the estimate (2.50) follows in a straightforward way from 

(2.53). O 

Now we come to 

Lemma 2.10. There exists a constant c independent of h such that 

(2.571) le2, 11 < ch 1/2 ||ph || 1/2 |Ih 1u -1/2 

for all Ph in Mh and Ph in Vh. 
Proof. Lemma 2.9 gives 

(2.58) le 2,'1 I< ch Z, J Yh- Z n-I II K I dPL (Yh) dK (xh) 

KE?h4LE47K 

Repetition of the arguments used to prove (2.56) yields lYh - xI > c> y - xI. 
Since p is constant along the normal n to F (i.e., p(y) = P(Yh) if y = YYh) 
there follows 

le2 I< ch f X IY) - p (x) I lbu(x) I dF(y) dF(x) 
(2.59) h Jrc' -I ly - Xln-I 

= ch j j P(y)-p(x) fu(x) dr(y) dF(x). 

If a is chosen so that n - 3 < a < n - 1, the Cauchy-Schwarz inequality gives 

leh2 I < ch (I p X 2(Pn-( 1)a dFG(y) dF(x)) 

(2.60) -l 1/2 
*(jj L(IY x) ddF(y)dF(x)) 

Note that 

IY (X) 12 ~ ~~1/2 
(2.61) ly r xlr /()dF(y) dF(x)) < collullo,r, 

with 

(2.62) car F dF(y) 1/2 

Setting n - 1 - a=2s, if 0 < s < 1 (i.e., a > n - 3), one gets the bound 
(cf. Lions and Magenes [23]) 

(2.63) 
lyrgr gY- XI(n-l)?2s dr(y)dF(x) < IIPIIHsr, 
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which yields 

(2.64) le 12'1 < CshIPplls,FrHullO,r for all s with 0 < s < 1. 

Using the inverse inequality, one can write 

(2.65) le 2,11 < csh 1/21IplIs iH112, for all s with 0 < < 1. 

It suffices to take s = 1/2, thus a = n - 2, to complete the proof of the 
lemma. El 

Remark 2.11. In the bidimensional case (i.e., n = 2), we have a = 0. This 
makes it possible to obtain directly the estimate (2.58) by means of the Cauchy- 
Schwarz inequality (cf. Bendali [2]). This is no longer possible for three- 
dimensional problems. 

The next lemma gives an estimate for the term e2 2,2 
eh 

Lemma 2.12. There exists a constant c independent of h such that 

(2.572) le2'21 < chIlPhH11/2IIuhI.-1/2 

for all Jh in Mh and Ph in Vh . 

Proof. Since PK is in PI , the estimate of the term e2,2 is obtained as follows: 

eh= anKE(x, Yh)gradKPK. Rh1K dK(Yh) dK(Xh) 
KEg 

(2.66) = anKE(X Yh)gradK PK. R-7K dK(yh) dK(xh) 

+ K K |9nKE(X, Yh) gradK PK. (Rh- R)ftK dK(yh) dK(xh). 
KEgh 

Here, R and Rh are defined as in (2.51), and nK in the same way as nL. 
Since gradK PK (Rh - R) is constant as a function of Yh on K, there follows 

(2.67) 

E I I anK E(X, Yh) gradK PK. (Rh- R)7K dK(Yh) dK(Xh) 

= K iKgradK PK. (Rh- R) (1anK E(x, Yh) dK(Yh)) dK(Xh) 

The inner integral can be calculated by Gauss's theorem: 

(2.68) jOanKE(X, Yh) dK(Yh)) = 2 c,) 

where co(K, x) is the angle (resp. the solid angle) under which the element K 
is viewed from the point x for n = 2 (resp. n = 3). 

Using (2.54), we can bound the term (2.67) by 

(2.69) ch2 2E J gradKPKI JUKI dK(Xh). 
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The Cauchy-Schwarz inequality and the inverse property of Lemma 1.5 yield 

(2.70) zJ f &l KE(X, Yh) gradpKP (Rh -R)K dK(Yh) dK(Xh) 
KE?/ KJ 

<! ch I||Ph || 1/2 11 Ph 1 - 1/2 

The last term to estimate in eh' 2 becomes 

(2.71) &'2,2 S f f OfnE(x, yh) gradRpK IRK dK(yh) dK(xh). 

K E gKJ 

A straightforward calculation gives 

2 anKE(X, Yh) gradKpK * R =- 
2 Rn gradKPK R 

(2.72) co,Rnh 
= R nK gradK PK * gradK E(X, Yh). 

Since R * nK is constant when x is fixed and Yh runs over K, the term eh, 2 

may be written as 
(2.73) 

= S J /UKR.nKgradK grad E(x, Yh) dK(yh) dK(Xh)- 
KhKPKK\ KI 

Two cases need to be distinguished. 
(i) Two-dimensional case (n = 2). In this case, K is a segment having AK 

and BK as endpoints. If TK denotes the unit tangent vector oriented from AK 
toward BK, an elementary theorem of integral calculus gives 

f gradK E(x, Yh) dK(yh) = (E(x, BK) - E(x, AK))TK 
(2.74) K1 

- -(ln(|x - BKI) - ln(|x - AKI))TK. 
71r 

Since JR nKJ is the distance of the point x to the segment K, we have the 
bound 

(2.75) e4 I -< J'K I gradKPK |R - nKln(|R - nK|)I dK(Xh) 

Since R-nKl <ch2 and JRnKIl ln(IR.nKW)J is bounded for any fixed E > 0, 
it follows that for all g such that 0 < c < 1/2 there exists h* > 0 and a 
constant c, not depending on 0 < h < h such that 

(2.76) |e2 
2 

< ceh1 IPhH11/2IthJJ-1/2. 

(ii) Three-dimensional case (n = 3). Following the method initiated by 
De Hoop (cf. Van Herk [36]), we can express 

f ~~1 3_R_K 1 __RK ____T 

(2.77) I grads dK(yh) = nKcw(K, X) + Zv VK In -+ 
M -_ M- 

JK h~xYh~ M=1 M MT 

where AI, A2, and A3 are the three vertices of the triangle K, RK: Am -X, 
RI := JR KI,TK := (Am+,-Am)/|Am+l-Aml, for m = 1, 2, 3; see Figure 2. 
The index convention that m + 1 = 1 when m = 3 is adopted. 
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x 

FIGURE 2 

An elementary calculation gives 

(2.78) In M+ RK * m ln(RK+1 -R +* TK) + ln(RK-RK K), RK + RK.Km m 
m m Tm 

thus yielding 

RK + RK *,K 
(2.79) Ve > 0, 3ce: InK * RI' In m+ K+I M < C6. RK + RK 

This completes the proof of the lemma. a 

It remains to estimate the term e2' 3. For this, we need the following lemma. 

Lemma 2.13. For all K in S, and L in WK, and for all Xh in the interior of 
K, we have 

(2.80) { 
co(L, x) < ch, 
co(L, Xh) <!~ch. 

The notation is that introducedfor K in (2.68). 
Proof. This is a consequence of well-known facts about error estimates for the 
derivatives in finite element interpolation. The details of how to obtain these 
estimates are not given. However, note that these estimates are obvious in 
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the two-dimensional case, and a consequence of the classical formula explicitly 
giving the expression of w(L, x) and w(L, Xh) in the three-dimensional case 
(cf., e.g., Van Herk [36]). 

The last estimate is given by the following lemma. 

Lemma 2.14. There exists a constant c independent of h such that 

(2.81) leD3 < ch IIPIIN1/2IIAYJ-112 
for all Ph in Mh and Ph in Vh. 

Proof. Consider two elements in Sh such that L and K are different, but 
have at least one common point M. Recall the notations PK := PhIK and 
PL := Ph IL. Arguments previously used give 
(2.82) 

PL (Yh) -PK (Xh) = PL (Yh) -PL (M) + PK (M) -PK (Xh) 

= (Yh - M) * gradLPL + (M - Xh) * gradK pK 

= R. gradLPL + (x - M)* gradLPL + (M - Xh) gradKPK. 

Observing that (x - M) * gradL PL + (M - Xh) * gradK PK is constant in Yh, we 
get 
(2.83) 

e' =- SE f((x-M)- gradLPL + (M-xh). gradKPK) 
n 

KEXh LEAK - 

* (w(L, x) - o(L, Xh))UfK dK(xh) 
2 - f[ (R Rh\ 

E E J .nLR . gradL PLtK dL(Yh) dK(xh). 

KE_1hLES4JKJL h~ 
Clearly, 

(2.84) 
x - Ml < ch, 

lXh - M < ch. 
It follows from Lemma 2.13 that the first term of the right-hand side of (2.83) 

can be bounded by 

(2.85) ch2 E E (I gradKPKI+ I gradLPLI)IuKI dL(Yh) dK(Xh). 

KE,h LE5 K 

The uniform regularity of the triangulation 5h (cf. (1.29)) insures that there 
exists a positive integer N not depending on K or h that bounds the number 
of elements of _4K, i.e., 

(2.86) CardVK < N. 

Clearly, arguments used above enable us to bound the expression (2.85) by terms 
of the form chlLuhjII/-112 IPh12 /2 

Introducing the common point M in the second term of (2.83), thus writing 

R*nL R 
(2.87) R- gradLPL = (M - X)nLy gradLPL, 
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Rh fL 
R- grad pL 

(2.88) h R hn 

=(M-Xh) -nLRh * gradLpL+ R (R-Rh) gradnpL 
h h 

helps estimating the term 

e Z 
Z:E3 {J(M-x) * nLK gradLPL.gL(x)dK(xh) 

KEgh LEAKK 

(2.89) (M - Xh) * nLLK gradLpL gL(Xh) dK(Xh)} 

E Z Z (R-Rh) * gradLPLiKwco(L, xh) dK(xh) 

The vector-valued function defined for z in Rn by 

gL (Z) :j= gradL E(z, Yh) dL(yh) 

is introduced to make the preceding formulae more concise. Using the estimates 

( (M-x) * nLI < ch2, 

(2.90) j |(M-xh) * nL < ch2, 

JR R-Rhl <ch, 

the De Hoop method (cf. (2.77)) and previously invoked arguments, we get 

(2.91) |e2,31 < ceh I Uhl -1/21lPh1 1/2 

Combining all the estimates given in the previous lemmas will prove Theorem 
2.5, and hence the main results given in Theorem 2.1. 

Remark 2.15. The convergence rate h1/2 of the discrete solution to the exact 
one seems to be somewhat weak. This is due to the fact that some estimates 
are given in the norm of H-1/2(r), because this space is necessary for the coer- 
civeness of the sesquilinear forms. However, in similar situations (cf. Bendali 
[2]), numerical results show that the convergence rate in the stronger norm of 
L2(1) is of the order h. Nevertheless, the h1/2-estimate may be considered as 
a consistency result, which makes the numerical analysis of the exact problem 
possible: it establishes existence, uniqueness, stability of the solution of the dis- 
crete problem, and its convergence to the solution of the continuous problem. 
The technical assumptions on the triangulation (cf. (1.28), (1.29), and (1.30)) 
seem to be needed only for purposes of theoretical asymptotic analysis and are 
not essential in practical computations. 
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